1,988 research outputs found

    Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity

    Full text link
    Microwave cavities for a Sikivie-type axion search are subject to several constraints. In the fabrication and operation of such cavities, often used at frequencies where the resonator is highly overmoded, it is important to be able to reliably identify several properties of the cavity. Those include identifying the symmetry of the mode of interest, confirming its form factor, and determining the frequency ranges where mode crossings with intruder levels cause unacceptable admixture, thus leading to the loss of purity of the mode of interest. A simple and powerful diagnostic for mapping out the electric field of a cavity is the bead perturbation technique. While a standard tool in accelerator physics, we have, for the first time, applied this technique to cavities used in the axion search. We report initial results from an extensive study for the initial cavity used in the HAYSTAC experiment. Two effects have been investigated: the role of rod misalignment in mode localization, and mode-mixing at avoided crossings of TM/TE modes. Future work will extend these results by incorporating precision metrology and high-fidelity simulations.Comment: 6 pages, 4 figures, submitted to the 2nd Workshop on Microwave Cavities and Detectors for Axion Researc

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Computational Complexity of interacting electrons and fundamental limitations of Density Functional Theory

    Get PDF
    One of the central problems in quantum mechanics is to determine the ground state properties of a system of electrons interacting via the Coulomb potential. Since its introduction by Hohenberg, Kohn, and Sham, Density Functional Theory (DFT) has become the most widely used and successful method for simulating systems of interacting electrons, making their original work one of the most cited in physics. In this letter, we show that the field of computational complexity imposes fundamental limitations on DFT, as an efficient description of the associated universal functional would allow to solve any problem in the class QMA (the quantum version of NP) and thus particularly any problem in NP in polynomial time. This follows from the fact that finding the ground state energy of the Hubbard model in an external magnetic field is a hard problem even for a quantum computer, while given the universal functional it can be computed efficiently using DFT. This provides a clear illustration how the field of quantum computing is useful even if quantum computers would never be built.Comment: 8 pages, 3 figures. v2: Version accepted at Nature Physics; differs significantly from v1 (including new title). Includes an extra appendix (not contained in the journal version) on the NP-completeness of Hartree-Fock, which is taken from v

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Norwegian translation, cultural adaption and testing of the Person-centred Practice Inventory - Staff (PCPI-S)

    Get PDF
    Background: Person-centred health care has widespread recognition, but there are few instruments aimed at measuring the provision of person-centred practice among health care professionals across a range of settings. The Person-centred Practice Inventory – Staff (PCPI-S) is a new instrument for this purpose, theoretically aligned with McCormack & McCance’s person-centred framework, which has been translated and culturally adapted into Norwegian. Methods: The study used a two-stage research design involving: translation and cultural adaption of the PCPI-S from English to Norwegian language (phase 1), and a quantitative cross sectional survey following psychometric evaluation (phase 2). Confirmatory factor analysis was used to examine the theoretical measurement model. Results: The translation and cultural adaption was carried out according to ten recommend steps. Discrepancies were addressed and revised by all translators until consensus was reached on a reconciled version of the translation. A sample of 258 health care staff participated in the survey. The model fit statistics were overall positive; the model requires minor modifications and these are mostly confined to correlated errors. Conclusions: The translation and cultural adaption process of the PCPI-S from English to Norwegian language was a demanding process in order to retain the conceptual meanings of the original instrument. Overall, the psychometric properties of the tool were acceptable, but testing on a larger sample size is recommended.publishedVersio

    Strength of Correlations in electron and hole doped cuprates

    Full text link
    High temperature superconductivity was achieved by introducing holes in a parent compound consisting of copper oxide layers separated by spacer layers. It is possible to dope some of the parent compounds with electrons, and their physical properties are bearing some similarities but also significant differences from the hole doped counterparts. Here, we use a recently developed first principles method, to study the electron doped cuprates and elucidate the deep physical reasons why their behavior is so different than the hole doped materials. We find that electron doped compounds are Slater insulators, e.g. a material where the insulating behavior is the result of the presence of magnetic long range order. This is in sharp contrast with the hole doped materials, where the parent compound is a Mott charge transfer insulator, namely a material which is insulating due to the strong electronic correlations but not due to the magnetic order.Comment: submitted to Nature Physic

    Use of Combined Hartree-Fock-Roothaan Theory in Evaluation of Lowest States of K [Ar]4s^0 3d^1 and Cr+ [Ar]4s^0 3d^5 Isoelectronic Series Over Noninteger n-Slater Type Orbitals

    Full text link
    By the use of integer and noninteger n-Slater Type Orbitals in combined Hartree-Fock-Roothaan method, self consistent field calculations of orbital and lowest states energies have been performed for the isoelectronic series of open shell systems K [Ar]4s^0 3d^1 2(D) (Z=19-30) and Cr+ [Ar] 4s^0 3d^5 6(S) (Z=24-30). The results of calculations for the orbital and total energies obtained from the use of minimal basis sets of integer- and noninteger n-Slater Type Orbitals are given in tables. The results are compared with the extended-basis Hartree-Fock computations. The orbital and total energies are in good agreement with those presented in the literature. The results are accurately and considerably can be useful in the application of non-relativistic and relativistic combined Hartree-Fock-Roothaan approach for heavy atomic systems.Comment: 11 pages, 6 tables, 2 figures. submitte

    What limits supercurrents in high temperature superconductors? A microscopic model of cuprate grain boundaries

    Full text link
    The interface properties of high-temperature cuprate superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables, and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. In studies of single, artificially fabricated grain boundaries the striking observation has been made that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behavior has been lacking. We present here the results of a microscopic evaluation based on a construction of fully 3D YBCO grain boundaries by molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle. We identify the buildup of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.Comment: 28 pages, 12 figure

    Ab initio

    Full text link
    corecore